Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(2): e54174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38496182

RESUMO

Basal cell carcinoma (BCC) is one of the most common skin malignancies worldwide. Morpheaform basal cell carcinoma (MBCC) is a rare aggressive subtype of BCC that presents with unique histologic features. Both are treated surgically and have an excellent survival rate. Metastatic breast carcinoma, on the other hand, has a poor survival rate along with a more burdensome therapeutic route including chemotherapy. Due to an overlap in common immunohistochemistry stains, there is a possibility of confusing the diagnosis of BCC with metastatic breast carcinoma resulting in potential patient harm. Therefore, a timely and accurate diagnosis distinguishing these malignancies is essential. We report a near-miss event in which a 77-year-old female with MBCC was mistakenly diagnosed with metastatic breast carcinoma. We discuss the details of these stains, characteristic features of MBCC, and treatment options and emphasize the importance of combining laboratory medicine with clinical expertise to improve patient outcomes.

2.
J Med Virol ; 95(8): e29009, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37563850

RESUMO

Despite intensive studies during the last 3 years, the pathology and underlying molecular mechanism of coronavirus disease 2019 (COVID-19) remain poorly defined. In this study, we investigated the spatial single-cell molecular and cellular features of postmortem COVID-19 lung tissues using in situ sequencing (ISS). We detected 10 414 863 transcripts of 221 genes in whole-slide tissues and segmented them into 1 719 459 cells that were mapped to 18 major parenchymal and immune cell types, all of which were infected by SARS-CoV-2. Compared with the non-COVID-19 control, COVID-19 lungs exhibited reduced alveolar cells (ACs) and increased innate and adaptive immune cells. We also identified 19 differentially expressed genes in both infected and uninfected cells across the tissues, which reflected the altered cellular compositions. Spatial analysis of local infection rates revealed regions with high infection rates that were correlated with high cell densities (HIHD). The HIHD regions expressed high levels of SARS-CoV-2 entry-related factors including ACE2, FURIN, TMPRSS2 and NRP1, and co-localized with organizing pneumonia (OP) and lymphocytic and immune infiltration, which exhibited increased ACs and fibroblasts but decreased vascular endothelial cells and epithelial cells, mirroring the tissue damage and wound healing processes. Sparse nonnegative matrix factorization (SNMF) analysis of niche features identified seven signatures that captured structure and immune niches in COVID-19 tissues. Trajectory inference based on immune niche signatures defined two pathological routes. Trajectory A primarily progressed with increased NK cells and granulocytes, likely reflecting the complication of microbial infections. Trajectory B was marked by increased HIHD and OP, possibly accounting for the increased immune infiltration. The OP regions were marked by high numbers of fibroblasts expressing extremely high levels of COL1A1 and COL1A2. Examination of single-cell RNA-seq data (scRNA-seq) from COVID-19 lung tissues and idiopathic pulmonary fibrosis (IPF) identified similar cell populations consisting mainly of myofibroblasts. Immunofluorescence staining revealed the activation of IL6-STAT3 and TGF-ß-SMAD2/3 pathways in these cells, likely mediating the upregulation of COL1A1 and COL1A2 and excessive fibrosis in the lung tissues. Together, this study provides a spatial single-cell atlas of cellular and molecular signatures of fatal COVID-19 lungs, which reveals the complex spatial cellular heterogeneity, organization, and interactions that characterized the COVID-19 lung pathology.


Assuntos
COVID-19 , Humanos , COVID-19/patologia , SARS-CoV-2/genética , Células Endoteliais , Análise da Expressão Gênica de Célula Única , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Pulmão/patologia
3.
J Med Virol ; 95(2): e28566, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36756942

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manifests diverse clinical pathologies involving multiple organs. While the respiratory tract is the primary SARS-CoV-2 target, acute kidney injury is common in COVID-19 patients, displaying as acute tubular necrosis (ATN) resulting from focal epithelial necrosis and eosinophilia, glomerulosclerosis, and autolysis of renal tubular cells. However, whether any renal cells are infected by SARS-CoV-2 and the mechanism involved in the COVID-19 kidney pathology remain unclear. METHODS: Kidney tissues obtained at autopsy from four severe COVID-19 patients and one healthy subject were examined by hematoxylin and eosin staining. Indirect immunofluorescent antibody assay was performed to detect SARS-CoV-2 spike protein S1 and nonstructural protein 8 (NSP8) together with markers of different kidney cell types and immune cells to identify the infected cells. RESULTS: Renal parenchyma showed tissue injury comprised of ATN and glomerulosclerosis. Positive staining of S1 protein was observed in renal parenchymal and tubular epithelial cells. Evidence of viral infection was also observed in innate monocytes/macrophages and NK cells. Positive staining of NSP8, which is essential for viral RNA synthesis and replication, was confirmed in renal parenchymal cells, indicating the presence of active viral replication in the kidney. CONCLUSIONS: In fatal COVID-19 kidneys, there are SARS-CoV-2 infection, minimally infiltrated innate immune cells, and evidence of viral replication, which could contribute to tissue damage in the form of ATN and glomerulosclerosis.


Assuntos
Injúria Renal Aguda , COVID-19 , Humanos , COVID-19/patologia , SARS-CoV-2 , Rim/patologia , Injúria Renal Aguda/patologia , Necrose/patologia
4.
J Med Virol ; 95(1): e28246, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271490

RESUMO

SARS-CoV-2 NSP12, the viral RNA-dependent RNA polymerase (RdRp), is required for viral replication and is a therapeutic target to treat COVID-19. To facilitate research on SARS-CoV-2 NSP12 protein, we developed a rat monoclonal antibody (CM12.1) against the NSP12 N-terminus that can facilitate functional studies. Immunoblotting and immunofluorescence assay (IFA) confirmed the specific detection of NSP12 protein by this antibody for cells overexpressing the protein. Although NSP12 is generated from the ORF1ab polyprotein, IFA of human autopsy COVID-19 lung samples revealed NSP12 expression in only a small fraction of lung cells including goblet, club-like, vascular endothelial cells, and a range of immune cells, despite wide-spread tissue expression of spike protein antigen. Similar studies using in vitro infection also generated scant protein detection in cells with established virus replication. These results suggest that NSP12 may have diminished steady-state expression or extensive posttranslation modifications that limit antibody reactivity during SARS-CoV-2 replication.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Ratos , SARS-CoV-2/metabolismo , Anticorpos Monoclonais , Células Endoteliais , RNA Polimerase Dependente de RNA/genética , Antivirais/metabolismo
5.
Am J Pathol ; 191(12): 2064-2071, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34506752

RESUMO

Current understanding of coronavirus disease 2019 (COVID-19) pathophysiology is limited by disease heterogeneity, complexity, and a paucity of studies assessing patient tissues with advanced molecular tools. Rapid autopsy tissues were evaluated using multiscale, next-generation RNA-sequencing methods (bulk, single-nuclei, and spatial transcriptomics) to provide unprecedented molecular resolution of COVID-19-induced damage. Comparison of infected/uninfected tissues revealed four major regulatory pathways. Effectors within these pathways could constitute novel therapeutic targets, including the complement receptor C3AR1, calcitonin receptor-like receptor, or decorin. Single-nuclei RNA sequencing of olfactory bulb and prefrontal cortex highlighted remarkable diversity of coronavirus receptors. Angiotensin-converting enzyme 2 was rarely expressed, whereas basigin showed diffuse expression, and alanyl aminopeptidase, membrane, was associated with vascular/mesenchymal cell types. Comparison of lung and lymph node tissues from patients with different symptoms (one had died after a month-long hospitalization with multiorgan involvement, and the other had died after a few days of respiratory symptoms) with digital spatial profiling resulted in distinct molecular phenotypes. Evaluation of COVID-19 rapid autopsy tissues with advanced molecular techniques can identify pathways and effectors, map diverse receptors at the single-cell level, and help dissect differences driving diverging clinical courses among individual patients. Extension of this approach to larger data sets will substantially advance the understanding of the mechanisms behind COVID-19 pathophysiology.


Assuntos
COVID-19/genética , COVID-19/patologia , SARS-CoV-2/patogenicidade , Autopsia , Progressão da Doença , Perfilação da Expressão Gênica , Coração/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Rim/metabolismo , Rim/patologia , Rim/virologia , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/patologia , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Bulbo Olfatório/virologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/virologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Glândulas Salivares/virologia , Análise de Sequência de RNA , Transdução de Sinais/genética
6.
Hum Pathol ; 114: 110-119, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33961839

RESUMO

Coronavirus disease 2019 (COVID-19) is an ongoing pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although viral infection is known to trigger inflammatory processes contributing to tissue injury and organ failure, it is unclear whether direct viral damage is needed to sustain cellular injury. An understanding of pathogenic mechanisms has been handicapped by the absence of optimized methods to visualize the presence and distribution of SARS-CoV-2 in damaged tissues. We first developed a positive control cell line (Vero E6) to validate SARS-CoV-2 detection assays. We then evaluated multiple organs (lungs, kidneys, heart, liver, brain, intestines, lymph nodes, and spleen) from fourteen COVID-19 autopsy cases using immunohistochemistry (IHC) for the spike and the nucleoprotein proteins, and RNA in situ hybridization (RNA ISH) for the spike protein mRNA. Tissue detection assays were compared with quantitative polymerase chain reaction (qPCR)-based detection. SARS-CoV-2 was histologically detected in the Vero E6 positive cell line control, 1 of 14 (7%) lungs, and none (0%) of the other 59 organs. There was perfect concordance between the IHC and RNA ISH results. qPCR confirmed high viral load in the SARS-CoV-2 ISH-positive lung tissue, and absent or low viral load in all ISH-negative tissues. In patients who die of COVID-19-related organ failure, SARS-CoV-2 is largely not detectable using tissue-based assays. Even in lungs showing widespread injury, SARS-CoV-2 viral RNA or proteins were detected in only a small minority of cases. This observation supports the concept that viral infection is primarily a trigger for multiple-organ pathogenic proinflammatory responses. Direct viral tissue damage is a transient phenomenon that is generally not sustained throughout disease progression.


Assuntos
COVID-19/patologia , Fígado/virologia , Pulmão/virologia , SARS-CoV-2/patogenicidade , Animais , Autopsia/métodos , COVID-19/virologia , Chlorocebus aethiops , Progressão da Doença , Humanos , Imuno-Histoquímica/métodos , Fígado/química , Fígado/patologia , Pulmão/patologia , RNA Viral/metabolismo , Células Vero/virologia , Carga Viral/métodos
7.
Mod Pathol ; 34(8): 1456-1467, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33795830

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated clinical syndrome COVID-19 are causing overwhelming morbidity and mortality around the globe and disproportionately affected New York City between March and May 2020. Here, we report on the first 100 COVID-19-positive autopsies performed at the Mount Sinai Hospital in New York City. Autopsies revealed large pulmonary emboli in six cases. Diffuse alveolar damage was present in over 90% of cases. We also report microthrombi in multiple organ systems including the brain, as well as hemophagocytosis. We additionally provide electron microscopic evidence of the presence of the virus in our samples. Laboratory results of our COVID-19 cohort disclose elevated inflammatory markers, abnormal coagulation values, and elevated cytokines IL-6, IL-8, and TNFα. Our autopsy series of COVID-19-positive patients reveals that this disease, often conceptualized as a primarily respiratory viral illness, has widespread effects in the body including hypercoagulability, a hyperinflammatory state, and endothelial dysfunction. Targeting of these multisystemic pathways could lead to new treatment avenues as well as combination therapies against SARS-CoV-2 infection.


Assuntos
COVID-19/fisiopatologia , Pulmão/fisiopatologia , Embolia Pulmonar/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia , Coagulação Sanguínea , COVID-19/sangue , COVID-19/patologia , COVID-19/virologia , Causas de Morte , Citocinas/sangue , Feminino , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/sangue , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Embolia Pulmonar/sangue , Embolia Pulmonar/patologia , Embolia Pulmonar/virologia , SARS-CoV-2/patogenicidade
8.
Am J Clin Pathol ; 156(4): 529-539, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-33822854

RESUMO

OBJECTIVES: To review the new current diagnostic criteria of transfusion-associated circulatory overload (TACO) and transfusion-related acute lung injury (TRALI) from the literature while highlighting distinguishing features. We provide comprehensive understanding of the importance of hemovigilance and its role in appropriately identifying and reporting these potentially fatal transfusion reactions. METHODS: A review of the English language literature was performed to analyze TACO and TRALI while providing further understanding of the rationale behind the historical underrecognition and underreporting. RESULTS: Our review demonstrates the new 2018 and 2019 case definitions for TACO and TRALI, respectively. With more comprehensive diagnostic strategies, adverse transfusion events can be better recognized from mimicking events and underlying disease. In addition, there are mitigation strategies in place to help prevent complications of blood product transfusion, with emphasis on the prevention of TACO and TRALI. CONCLUSIONS: TACO and TRALI are potentially fatal adverse complications of blood transfusion. Both have been historically underrecognized and underreported due to poor defining criteria and overlapping symptomatology. Developing a thorough clinical understanding between these two entities can improve hemovigilance reporting and can contribute to risk factor identification and preventative measures.


Assuntos
Transfusão de Sangue , Reação Transfusional/etiologia , Lesão Pulmonar Aguda Relacionada à Transfusão/diagnóstico , Segurança do Sangue , Humanos , Fatores de Risco , Lesão Pulmonar Aguda Relacionada à Transfusão/sangue , Lesão Pulmonar Aguda Relacionada à Transfusão/complicações , Lesão Pulmonar Aguda Relacionada à Transfusão/patologia
9.
J Infect Dis ; 223(11): 1842-1854, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33837392

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) patients manifest with pulmonary symptoms reflected by diffuse alveolar damage (DAD), excessive inflammation, and thromboembolism. The mechanisms mediating these processes remain unclear. METHODS: We performed multicolor staining for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins and lineage markers to define viral tropism and lung pathobiology in 5 autopsy cases. RESULTS: Lung parenchyma showed severe DAD with thromboemboli. Viral infection was found in an extensive range of cells including pneumocyte type II, ciliated, goblet, club-like, and endothelial cells. More than 90% of infiltrating immune cells were positive for viral proteins including macrophages, monocytes, neutrophils, natural killer (NK) cells, B cells, and T cells. Most but not all infected cells were angiotensin-converting enzyme 2 (ACE2) positive. The numbers of infected and ACE2-positive cells are associated with extensive tissue damage. Infected tissues exhibited high levels of inflammatory cells including macrophages, monocytes, neutrophils, and NK cells, and low levels of B cells but abundant T cells consisting of mainly T helper cells, few cytotoxic T cells, and no regulatory T cells. Robust interleukin-6 expression was present in most cells, with or without infection. CONCLUSIONS: In fatal COVID-19 lungs, there are broad SARS-CoV-2 cell tropisms, extensive infiltrated innate immune cells, and activation and depletion of adaptive immune cells, contributing to severe tissue damage, thromboemboli, excess inflammation, and compromised immune responses.


Assuntos
COVID-19/patologia , Pulmão/patologia , SARS-CoV-2/fisiologia , Tropismo Viral , Adulto , Idoso , COVID-19/imunologia , COVID-19/virologia , Feminino , Humanos , Imunidade Inata , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/virologia , Tropismo Viral/imunologia
10.
Hum Pathol ; 105: 74-83, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32750378

RESUMO

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has been declared by the World Health Organization as an emerging public health problem of global importance and classified as a pandemic. SARS-CoV-2 infection can result in diverse, multiorgan pathology, the most significant being in the lungs (diffuse alveolar damage in its different phases, microthrombi, bronchopneumonia, necrotizing bronchiolitis, viral pneumonia), heart (lymphocytic myocarditis), kidney (acute tubular injury), central nervous system (microthrombi, ischemic necrosis, acute hemorrhagic infarction, congestion, and vascular edema), lymph nodes (hemophagocytosis and histiocytosis), bone marrow (hemophagocytosis), and vasculature (deep vein thrombosis). An understanding of the spectrum and frequency of histologic findings in COVID-19 is essential for gaining a better understanding of disease pathophysiology and its ongoing impact on public health. To this end, we conducted a systematic meta-analysis of histopathologic observations to date and review the reported findings.


Assuntos
COVID-19/patologia , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia , Biópsia , Vasos Sanguíneos/patologia , Sistema Nervoso Central/patologia , Feminino , Humanos , Rim/patologia , Pulmão/patologia , Linfonodos/patologia , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Tromboembolia/patologia
12.
J Med Virol ; 92(7): 699-702, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32314810

RESUMO

Neurologic sequelae can be devastating complications of respiratory viral infections. We report the presence of virus in neural and capillary endothelial cells in frontal lobe tissue obtained at postmortem examination from a patient infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Our observations of virus in neural tissue, in conjunction with clinical correlates of worsening neurologic symptoms, pave the way to a closer understanding of the pathogenic mechanisms underlying central nervous system involvement by SARS-CoV-2.


Assuntos
Ageusia/diagnóstico , Ataxia/diagnóstico , Betacoronavirus/patogenicidade , Infecções por Coronavirus/diagnóstico , Transtornos do Olfato/diagnóstico , Pneumonia Viral/diagnóstico , Convulsões/diagnóstico , Idoso , Ageusia/complicações , Ageusia/fisiopatologia , Ageusia/virologia , Ataxia/complicações , Ataxia/fisiopatologia , Ataxia/virologia , Betacoronavirus/genética , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/complicações , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Células Endoteliais/patologia , Células Endoteliais/virologia , Evolução Fatal , Lobo Frontal/irrigação sanguínea , Lobo Frontal/patologia , Lobo Frontal/virologia , Hospitalização , Humanos , Pulmão/irrigação sanguínea , Pulmão/patologia , Pulmão/virologia , Masculino , Neurônios/patologia , Neurônios/virologia , Transtornos do Olfato/complicações , Transtornos do Olfato/fisiopatologia , Transtornos do Olfato/virologia , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Convulsões/complicações , Convulsões/fisiopatologia , Convulsões/virologia
13.
Surg Endosc ; 33(3): 949-958, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30350104

RESUMO

BACKGROUND: A mucosal lift is needed for ESD and EMR. Most lifts are made via sclerotherapy needle injection. The firm push needed to penetrate the mucosa often leaves the needle tip in the deep wall. The needle is next withdrawn and fluid injected until a sharp lift (due to submucosal expansion) begins to form; the needle is then held steady and the injection finished. The initial injection may result in a subtle deep lift that resolves quickly. It was the authors' belief that only submucosal expansion could lead to a stable mucosal lift. A colonic ESD case in which a polyp was inadvertently resected via needle knife in an expanded subserosal plane led to a questioning of this position. This study's purpose was to determine if stable deep wall mucosal lifts can be generated via bowel wall injection. METHODS: Transmucosal and intramural injections into bovine large bowel were carried out. Stable lifts and lift cross sections were made and examined grossly and histologically to determine the location of the lift fluid. Clinical ESD videos were also reviewed. RESULTS: Over 200 intact and cross-sectioned lifts were assessed. Gross inspection revealed two types of lifts (superficial and deep), whereas cross sections and histologic analyses revealed examples of stable expansion of the submucosal, muscularis propria, and subserosal layers post injection. Clinical "deep" lifts were also found. Superficial lifts are more focal and taller, whereas deep wall lifts are broader and less prominent. CONCLUSION: Stable deep wall mucosal lifts occur and are likely due to the deep starting point of the needle post insertion. If ESD/EMR are attempted with a deep lift, the chances of failure or perforation are high. Lifts must be carefully scrutinized before starting ESD/EMR. Other means of lift establishment should be evaluated and considered.


Assuntos
Colo/cirurgia , Endoscopia Gastrointestinal/métodos , Injeções/métodos , Mucosa Intestinal , Escleroterapia , Animais , Bovinos , Colo/patologia , Agulhas
14.
Am J Clin Exp Immunol ; 1(2): 113-123, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23243629

RESUMO

Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the tryptophan-catabolizing pathway and a key regulator of peripheral immune tolerance. As the suppressive effects of IDO are predominantly mediated by dendritic cells (DCs) and IDO-competent DCs promote long-term immunologic tolerance, a detailed understanding of how IDO expression and activity is regulated in these cells is central to the rational design of therapies to induce robust immune tolerance. We previously reported that the cystine/glutamate antiporter modulates the functional expression of IDO in human monocyte-derived DCs. Specifically, we showed that blocking antiporter uptake of cystine significantly increased both IDO mRNA and IDO enzymatic activity and that this correlated with impaired DC presentation of exogenous antigen to T cells via MHC class II and the cross-presentation pathway. The antiporter regulates intracellular and extracellular redox by transporting cystine into the cell in exchange for glutamate. Intracellular cystine is reduced to cysteine to support biosynthesis of the major cellular antioxidant glutathione and cysteine is exported from the cell where it functions as an extracellular antioxidant. Here we show that antiporter control of IDO expression in DCs is reversible, independent of interferon-γ, regulated by redox, and requires active protein synthesis. These findings highlight a role for antiporter regulation of cellular redox as a critical control point for modulating IDO expression and activity in DCs. Thus, systemic disease and aging, processes that perturb redox homeostasis, may adversely affect immunity by promoting the generation of IDO-competent DCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...